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Biased random walk in energetically disordered lattices
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We utilize our previously reported model of energetically disordered lattices to study diffusion properties,
where we now add the effect of a directional bias in the motion. We show how this leads to ballistic motion at
low temperatures, but crosses over to normal diffusion with increasing temperature. This effect is in addition
to the previously observed subdiffusional motion at early times, which is also observed here, and also crosses
over to normal diffusion at long times. The interplay between these factors of the two crossover points is
examined here in detail. The pertinent scaling laws are given for the crossover times. Finally, we deal with the
case of the frequency dependent bias, which alterriatgitches its direction with a given frequency, resulting
in a different type of scaling.51063-651X98)11008-3

PACS numbd(s): 05.40:+j, 05.60+w

I. INTRODUCTION A general behavior characterizing these systems is that
disorder results in anomalous diffusion laws. It slows down
Diffusion in the presence of disorder is an ever enlarginghe diffusion process at early times. However, there exists a
field due to a wealth of new phenomena and processes thatossover timer., after which diffusion becomes normal
are being unravellefil,2]. While the mechanism for the dif- with time. In a sense this crossover time is the characteristic
fusion process itself is rather simple, in the presence of dis“equilibration” time, the time it takes for the diffusing par-
order it is much more difficult to treat because one now hagicles to reach an “equilibrium” state with the underlying
a combination of two stochastic processes, strongly deperthisorder. This point has been also compared in the past with
dent on each other. The details of their coupling is not clearthe percolation picture, in which the crossover time is a
but one must take into account the fact that disorder castrong function of the temperatufe Thusr, gives the onset
appear in a wide variety of different forms: it can be deter-of the exploitation of open channels for the particle to dif-
ministic or (statistically random, geometric or energetic, fuse, as a function of the order parameterThe Arrhenius
constant or varying with time, etc. so that the emerging sysplot of 7. vs 1T indeed produces identically the critical
tem is a combination of several different factors, each one ofhreshold value, for two- and three-dimensional lattif&s
which must be properly treated in a separate way. The maifhis trend of earlyt anomaly / long linearity is not unique
expectation is that the transport properties behave irregun our system. There is a plethora of different systems where
larly, leading to highly anomalous diffusion of classical par- equivalent behavior is observed. To name a few: adsorption
ticles. The disorder itself can be geometric, due to an irreguand diffusion of interacting particles on a surfd@&, and
lar lattice structure, such as, for example, the percolatiomiffusion on extremely rugged energy landscapes with equal
model or a variety of fractal structures, in which case theminima[9,10].
details are determined by the ramifying characteristics Nonsymmetric diffusion has in the past also been a perti-
present. Or it can be energetic, in which case the lattice sitesent model for understanding several processes, such as, for
(or bonds are assigned different energy states. We have reexample, the excitonic motion at low temperatures], hy-
cently introduced a mod¢B—6] with the latter type of dis- drogen diffusion in group-VB metals at higher temperatures
order, which is placed on the bonds between the sites. Thel2], the creation of vacancies in soli§&3], etc. In these
difference between site and bond disorder was pointed out iworks there is an abundance of theoretical and simulation
the past[1], and it affects the symmetry of the transition results modeling the experimental data. The nonsymmetrical
probabilities between adjacent sites. Our model assigns a di€haracteristic was due to the retention of memory of the pre-
ferent energ)E to every lattice bond, so that a particle hop- vious steps, resulting in enhanced diffusion. In the present
ping from one site to the next has to overcome a potentiaiork we also use asymmetric diffusion, which is now due to
barrier. The extent of disorder can be varied using a dispemne designated preferred direction, constant in space and
sion parametef7]. Transitions are performed by a hopping time, resulting in a drift-type motion, resembling the pre-
mechanism which is now very common in treating disor-sense of an external field. This also results in superlinear
dered systems with a large variety of applications, such as ihehavior. This type of motion is amenable to oriented sys-
semiconductor systems, in ionic conductivity, in superionictems, such as columnar liquid crystals, or kinetics in electro-
solids, in carrier recombination in glasses, and in dispersiophoresis. Technically, this is done by lowering the energy
in flow through porous media. Modified random walk mod- barriers in a preferred direction, while raising the equivalent
els that take the disorder into account are also used in sudh the opposite direction for the duration of the hop. This is
approaches. done by addingsubtracting a bias factore to (from) the
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values of the energy barriers alorigpposite t¢ the bias P
direction. A ballistic type of motion is expected, and is in-

deed observed. The overall system behavior depends on the
interplay ofe, and the temperature.

A new picture emerges if the bias factor is not constant in <E>
time, but varies with a given frequeney. It is a picture of /~ 2.
“alternating current,” with the electrons switching direction
every 1l steps. This also results in superlinear behavior of
the mean-square displacement. Frequency dependent diffu-
sion has been studied in the pdd4¥-1§, but there the
mechanism involves the entire renewal of the disorder details 0 dE E E
every 1k steps, while in the present model the disorder is max
frozen and only the bias direction is frequency dependent.

FIG. 1. The effective new distribution of energies after the in-
clusion of the bias factog. This factor has as a result the lowering
Il. MODEL of the E, o value by the ammount of E)/2) €, as shown.

We start with the earlier describd®—-6] Monte Carlo
model, according to which a square lattice is generated in
way that each two neighboring sites are connected with
channel(bond having an energy barrier with a height that is
generated randomly from a given distribution. The height of €
the barriers depends on the average vdldg, and on a Ei(f”=<E>y—ay(x—0.5)I§<E>y. 4
given dispersion parametet, in the following way:

a fixed amount, (E)/2) e, and increasing the barriers in the
3pposite direction by the same amount. Thus the energy bar-
fers for the motion along the bias dimension become

E;;=(E)— o(x—0.5), (1) The parametee can take any positive value, and thus the
term ((E)/2) e represents a multipléor fraction of 3 the

wherex is a random number between 0 and 1 from a giveraverage energy value. This lowering/raising is not perma-
distribution (say, a uniform random number distributjon nent, but is considered to occur only for the duration of a
The parameter- shows how widely dispersed the energiessingle jump, while the barrier energies revert to their regular
are distributed, with larger values denoting a large degree Values afterwards. The minus sign pertains for the motion
of disorder, while ass—0 the system becomes a perfect along the direction of bias, while the plus sign for the oppo-
lattice. All barriers remain frozen during the entire processsite direction. Since negative valuesB§’ are not permit-
Thus this model resembles the model of a rugged energied, Ei(jy) is set equal to zeroE(ij)=0) in all cases when
landscape, where the ruggednes9 €an be varied at will negative values are obtained according to &). A sche-
[7]. A particle is placed at a random positigsite) on the  matic of the modified density distribution is given in Fig. 1,
lattice, and then performs random walks. The decisiorwhere we observe the shift of the right boundary toward the
whether to jump or stay still and to what direction is basedleft by the amount(E)/2) e. This results in a corresponding
on the local environment and follows the Boltzmann statispart with negative energies, in the left boundary, which is
tics. The probabilitiesP;; to jump from sitei to sitej are  moved and added to &function on zero.
calculated by: The dimension that contains no bias is not affected at all,
and, thus, the forward and backward jumps in xh@éimen-
sion (the dimension perpendicular to the hiagve the same
probability as before. In this way the barrigrond energies

in the x dimension are defined by an expression similar to
Here z is the coordination numbek the Boltzmann con- Eq. (1):

stant, andT the system temperature. For convenience we

1
Pij=> exp(—E; /KT). 2

takek=1, and the temperature is measured in energy units. Efj")=<E)x—ax(x—O.5). 5)
There is also a finite probability to remain on the same site
(no jump, which is given by The result of such a biased walk is schematically shown

in Fig. 2, where we give two typical walks, starting at the
p.=1-> P, (3 ~same point on the lattice: one with no bias and one with bias.
" E R The case with no bias results in a regular random walk mo-
tion, similar in nature to a random walk on a regular surface.
The present barrier model has the feature that at all time$he details of the energy barriers do not show at all, and do
Pij=P;ji, since randomness is incorporated into the latticenot affect the path traveled by the particle. For the case with
bonds and not into the lattice sites. For the latter model thibias we clearly see the directional character of the motion.
is not the case. We now introduce a bias paramgtenly in ~ We observe a path that is almost unidirectional, along the
one of two dimensions, say in thedimension. This factor direction of the bias. In this pictorial the lattice size is 400
makes jumps in one direction of thyeaxis somewhat easier X1000; the random walk starts at the midpoint, i.e (280,
(more probablg and jumps in the opposite direction of the 500); the end point is aroun@®00, 570. This is because the
same axis more difficult. This is done by momentarily low- bias makes the particle to preferentially move toward the
ering the height of the barrier along the direction of bias byright in the lattice.
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FIG. 2. Pictorial of the path of a particle in the case of normal
diffusion with no bias(thin line), and the case of diffusion with a
bias of e=0.9 (thick line). The temperature here &= 0.075. The
direction of the bias in this case is along increasingalues. Both
walks start at the same origin, which is h€&90,200.

The mean values of the energy barriers alongxttaady
dimensions(E), and(E),, and the corresponding disper-
sion parameters, and oy, can be varied at will. This al-
lows one to model the motion in more or less oriented sys- . . . ‘ ‘
tems, or systems with anisotropic characteristics. For 10° 10" 102 10° 10" 10° 10°
instance, one-dimensional motion is obtained fdE), Time
>(E), and o,=0. Therefore, the algorithm permits one to
have an asymmetric motion in two dimensions, not only dus;,,,

FIG. 3. The mean-square displaceméRe) as a function of
e (number of steps for several different temperature®

to the bias but also whe(fE),#(E)y, or ox# oy. The prob-  _q o5 0,055, 0.065, 0.075, 0.1, 0.15, and @5 andT=0.5, 5,
lem can be easily extended to three dimensions, using thgy 25 100, and 1000b), for a frozen 2D lattice of size 400
same ideas and model discussed above. %1000, in log-log form. The bias parameter 1.8 and the disper-

In a further development, the sign of the direction of thesjon ¢=1.0. We used 1000 realizations.
bias can alternate in time with a given frequeneyIn this
case the sign of the strength eofs changing after 1 steps,
but always along the same coordinate. In this way the energy
barriers for a motion along the bias dimension become: A. Unidirectional biased random walk

IV. RESULTS AND DISCUSSION

In Fig. 3, we plot the mean-square displacem@?), as
(o) a function of time for a fixed value of the bias parameter
Ei(jy):<E>y_0-y(X_o-5)IT<E>y- (6)  =1.8, and several different temperatures, in the rafige
=0.05-1000. Because of different trends present, we show
this figure in two parts(a) low T and (b) high T. We ob-
IIl. SIMULATION PARAMETERS serve in parta), whereT is in the rangel =0.05-0.5, that
in the long time limit all slopes reach a limiting value of 2,
Here we give the parameter values used in the Montevhich is the expected result, since this model represents a
Carlo calculations. Typical sizes for the square lattice usedorm of ballistic motion whereby in the presence of external
here have lengths of 1060400 sites. The reason we use afield (biag the particle drifts with a constant velocity along
rectangle, rather than a square, is because the displacemeé field, so thal(RZ)~t2_ The time it takes to reach this
along the coordinate with the bias is always larger than thdéimiting value is a strong function of temperature. The lower
one with no bias. Particles are placed in the center of thehe temperature, the longer this takes. Ignoring the first ten
lattice before the walk is started. We always use cyclicsteps, at early times we observe that the system is subdiffu-
boundary conditions. In all computations we use a uniformsive, which is more pronounced the lower the temperature.
random number distribution, and we s@),=(E),=0.5  The reason for this behavior is the same as observed for the
and o,=0,=1. This means that we have the maximumsimple case of no bias reported earlier by [@s-5]. The
width of energies in the range between 0 and 1, in bottparticle is trapped in some region of space which forms a
dimensions. The bias parameteris varied between €¢  low-lying valley, and it must overcome some activation en-
<5.0. The temperatur@ is in the range 0.08 T<<1000. ergy barriers, given by the barrier heights of the model. This
The frequencyw changing the bias direction is in the range can happen only via a thermal mechanism, so at very low
10" 4<w<1. Typical times sampled are up tox11(° steps temperatures detrapping from such a low-lying valley is
(exceptionally, at low temperatures we reachi@® steps.  highly unlikely, and the particles spend a considerable
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FIG. 4. The mean-square displaceméRf) as a function of
temperatureTl, for the same data of Fig. 3, fa=1.8. FIG. 5. The mean-square displaceméRf) as a function of
time (number of steps for several different values of the bizs

. . . . €=0.1, 0.2, 0.5 and 1.0, for a frozen 2D lattice of size 400
amount of time before making a successful jump over a hlghx 1000, in log-log form. The temperatures=0.6 and the disper-

barr_ier. Eventually, at Iong, a Iim_itiryg sloee of._2 i; al\,/)/ays sion o= 1.0 (1000 realizations
attained, and the system is again in an “equilibrium” state.
This happens for any value @f#0. Naturally, the smaller o
the e value, the longer it takes for this to happen. We thus The effect of the biag is shown by the data of Table I,

choose for Fig3 a relatively large valuee=1.8) to speed Where we show the fractiofR)/(R}), the bias being along

up this effect. they axis. All trends are as expected, i.e., the fraction de-
In Fig. 3(b), we show the rang&=0.5-1000. Here we creases with increasingfor low and intermediatd’, while
observe an opposite effect to that shown in Fi¢p)3i.e., it is almost constant for very higf.

(R?) decreases with increasing temperature. More impor- In Fig. 5, we plot(R?) as a function of time, for a con-
tantly, the limiting slope of 2 progressively changes to astant temperatureT(=0.60), which is in the intermediafg
limiting value of 1, which is fully attained at the highest range, for several different values of the bias parameter
temperaturd =1000. This happens because, as the temperaAe observe the expected peel-off effect, i.e., the smaller the
ture is progressively increased, there is enough thermal ere value the longer it takes for the system to acquire the
ergy to overcome barriers of any height, so that the effect oballistic character. Eventually all slopes reach the limiting
bias (which results in simultaneous increasing and decreasvalue of 2, as expected, since at this temperature the effect of
ing of two barriers along one directipis not that important the bias is important.

anymore. AtT=x the slope of thé R?) line would be ex- For all curves of Figs. 3 and 5, the time it takes to reach
actly equal to 1, since the effect of the bias is completelythis limiting slope,r., strongly depends on the system tem-
lost. Had we combined pari®) and (b) in Fig. 3, several peratureT and bias factore, respectively. For the data of
curves would necessarily cross. The effect is shown mor€&ig. 3(a), for high temperaturesT(=0.5) this happens rela-
clearly in Fig. 4, where we plotR?) vs T for several fixed tively early, but as the temperature is decreaskd @.05),
times. We observe in all cases that there is a maximum, gets progressively longer. This behavior is analogous to
aroundT=0.5. This is the crossover point where the combi-our earlier resulf3] for the case of no biase&0), in which
nation of the two opposite trends produces the largBS) case the curves and trends are similar, but the limiting slope
value. In Fig. 4 we plo{R?) vs T for several fixed times, was the classically expected slope of 1.0, resulting in a typi-
t=10, 1%, 10%, and 10 steps. We see that the maximum cal Arrhenius behavior. However, in that case Redata
(optimum value is always around@= 0.5, while this maxi- were monotonic with temperature, while here this is not the
mum is more pronounced at longer times. case. If we still prepare such a plot, we see in Fig. 6 that

TABLE I. The ratio of the mean-square displacement perpendicular to the(lﬁé}s, over the mean-
square displacement along the biéaf,), for various values of bias and temperature, at a fixed time
(t=10° MC steps. We used 500 realizations.

2 2 2
R0 (T=0.079 i (T=0.15 (R (T=0.5 Ry (T=5) (R (T=1000

€ (R) ®R) (R)) (R)) (R))
0.1 0.01928 0.00223 0.00214 0.0821 0.9726
0.3 0.00526 0.0003 0.000265 0.0097 0.9744
05 0.00319 0.00011 0.0000954 0.0037 0.9658
07 0.00177 0.00006 0.00005127 0.0020 0.9579

0.9 0.000897 0.00004394 0.00003356 0.0012 0.9478
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108 ‘ ‘ ‘ . . . In the case of no bias, this leads to the pictiBEof the
availability of open channels through which the particle can
105 | propagate. Even though here we do not have a binary lattice
of open and closed bonds, still it was shoy8] that this
104 L problem corresponds to an effective percolation problem, for
which one should define and/or find the critical threshold
Te 10° | value by monitoring diffusion in a wide temperature range.
This produced a critical value @f.=0.5, from the Arrhenius
© 2=0.1, Slope=0.49 .. .
102l & 2 02 Slpe0 8 ] plot d.ata, S|m|Iar_to Fig. 6.. In our new problem here the
Fin & &=1.0, Slope=0.47 inclusion of the biase effectively decreaseBq«. The low-
10" .o - iy oo ering of E with increasing bias can be explained by taking
] « =50, Slope=0 ] into account at least two additional effects: First, with the
. increase of bias the dimensionality of the motion is changing
10°; " 8 12 16 20 24 28 from two dimensionalfor e=0) to quasi-one-dimensional
1/T (for e=x); a good illustration of this effect was shown in

Fig. 2. Therefore, the effectivp, now depends or. Sec-

FIG. 6. The crossover time, (the time after which(R%) be-  ond, the position oE ¢ is determined 17,18 by the equa-
comes linegr, as a function of IV for the same data as in Fig. 3 tjon
(e=1.8), and several more values.

Eefi(€)
. : : f P(E)dE=pc(e), ®
below a certain temperaturel £0.50) we obtain straight 0

lines for all cases, i.e., we have Arrhenius behavior at the i . o
entire range. Abover>0.50 we do not obtain Arrhenius Where P(E) is the spectrum(the probability distribution
behavior due to the thermal effect discussed above. 7he function of the barrier heightswith the limiting condition
values that were used in this figure were derived as the cross Epna €)
point of the two straight line segmengsarly time and late f P(E)dE=1. 9
time) of each curve of Fig. 3. The best fits from linear least 0
squares were used in each case. The first and last points In the case of no biase=0), we have a uniform distri-
needed to calculate the fit were chosen arbitrarily, by opti-bution of ener barrier@(E)z, P and the upper limit of
cally estimating the departure from linear behavior. In Fig. 6th int i %y 9 i ' PP
we have also included several additiomalalues. In Table II € integral in Eq(9) is
we give the slqpes of the straight Iinfas for all these cases. For Emac= 2(E), (10)
e=0 we obtain a slope of approximately 0.5, which was
explained in the past to conform with the percolation picture so that
sincep.=0.50 is the critical percolation threshold for bond
percolation in two dimensions. Then, for differentalues, b 1 11)
we obtain slopes that are progressively smaller than 0.5. The =
difference from 0.5 is proportional te, i.e., the larger the
bias the more different is the crossover value from the 0.50n the case of finite biase(>0), it is useful to split the
value. integral in the following way:
We make the assumption that the temperature dependence E o AE E o

of Tc,.fOI’ the straight line section of these curves, follows an f eff P(E)dEzf P(E)dEJrf eff P(E)dE.
experimental law 0 0 AE

(12

Eeff
TFeXF(ﬁ)- () As we reduce every barrier along the bias axis by the
amount (E)/2) e, the probability distribution function re-
mains uniform. Only in theP(E) versusE plot must the
rectangle be shifted to the left for a distand&)/2) €, as
shown in Fig. 1. This means th&=0 above the quantity
[Emax— (E)2) €], while it remains P= 1/(2(E)) (un-

TABLE Il. The slopes of the straight lines of the Arrhenius plots
of the crossover timek., for several biases investigated in Fig. 5.

€ Slope oft, L . .
changed below this limit. Then we set all negative energies

0 0.508 exactly at zero. This means tHa(E) is changed, but only in
0.1 0.49 the vicinity of E=0, and it is changed in such a way that the
0.2 0.476 first integral is becomind®({E)/2) €, while in the interval
0.5 0.48 betweendE and[2(E)— ((E)/2) €] the probability is again
1.0 0.471 P.
1.8 0.449 By taking into acount the explicit form d?(E), one has
25 0.38

5.0 0 Eei=2(E)pc(€)— @6, (13
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FIG. 7. The percolation thresholth(e) vs e. The straight line ~ Plotted.
is the best linear fit with slope 0.21.
is given by the temperature at which a minimum appears in

where the critical threshold is a function of the bias faetor ~the 7c against 1’ curves in Fig. 6. It follows thall; scales
From Eq.(7), it follows that the slopes of Inf) versus the With € asTc~e""%
1/T plot, given in Fig. 6(and listed in Table ), are equal to

Eci(€) (in k units). Thus, we can use these data to determine B. Frequency dependent biased random walk

from Eq.(13) the dependence of the percolation threshmid We now turn to the case of a frequency dependent bias,

on e. At this point there is no basis for any predictions for when e= e(w). Figure 9 gives the behavior of the mean-

this dependence. Our results are shown in Fig. 7. It is seell are dis lacemerR2) as a function of time for a fre-
that p. grows linearly from 0.5(for e=0, two-dimensional g P

motion) to 1 (for e=2.2, quasi-one-dimensional motion quencyw=0.1. This means that everyd/~ 10 time steps
The best fit for theestra{i ’htqline ves a relationshi the bias direction changes sign, but always on the same di-
9 9 P mension, say thg dimension mentioned earlier. In the same

figure are also given the mean-square displacements along
P.=0.5+0.22%. (14 the bias axis(RZ), and perpendicular to the bias ax{&?).
If the biase is constant with respect to time, then t{fe?)

We conclude that the inclusion of the bias in the motioncurve is parabolic in linear coordinates. When the bias is
has as a result the linear increase of the value of the threskdternating at a given frequency, we observe an almost linear
old, p., making the motion one-dimensional-like. We also{R?) vs time dependence. On the other hand, because of the
observe that the value=2.2 produces g, value of p.  biase(w), the increase of the diffusion coefficient is consid-
=1, which is the upper limit. This effectively says that for erable. The results foF =0.05 andw=0.1 are given in Fig.
this value the motion is one dimensional. This is not a gen®. We have obtained similar results fér=0.1 and other
eralized result, since it comes from simulations using théemperatures.
particular energy distributions, dispersiof etc. The manner in which the mean-square displacement along

In Fig. 8 we plot in log-log coordinates the critical tem- the bias axis(R§>, depends on frequenay is illustrated in
perarureT . above which the mechanism of motion switchesFig. 10, forT=0.05. Because of the alternation of the sign of
from ballistic motion to random walk against the biasT,  e(w), the <R§> against time dependence is sawtooth-like.

This is clearly seen in the inset in the figure, far
100 : =0.0001(i.e., the sign is reversed each 10 000 stepsr all
other frequencies only lines connecting the minima of the
corresponding sawtooth-like curves are presented. The
slopes of the curves are the diffusion coefficieDtg ) in
the direction along the bias axis.

When bias is applied, the particle moves predominantly

along the direction of the bia$ke running downhil}, while

T /
c being confined within a low barrier valley, surrounded by

/ ridges of high barriers. Thus it comes comparatively quickly
' to the border of the valley. Due to the bias, the bordering
barriers(in the bias directiopwill be lower, but the hopping
particle will still need some characteristic timg until the
ridge is overcome and a new valley entered. Now, if the bias
5 - , direction is reversed within a period ! (7.), the lower
10 1% 10 ridge of barriers will again grow higher and the particle will
fail to overcome them within the characteristic timg.
FIG. 8. Plot of the critical temperatuf®, vs e from the data of ~ Clearly, the highew is, the less mobile the hopping particle
Fig. 6. will be, i.e., there is a small probability for successful move-

101
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FIG. 10. The mean-square displacem@R{?) as a function of frequencyw of the bias, for several different temperatures.

time for several different frequencies, as designated. The inset
contains the detail of the plot origin, where we observe the “saw-
tooth” behavior discussed in the text. The temperature here is
T=0.05. We presented a diffusion model for energetically disor-
dered two-dimensional systems in which motion can be cor-
ment along the rugged landscape of the lattice. Generallytelated according to an external field, and, therefore, partially
this should lead to an overall reduction of the diffusion CO'acquire a one-dimensional character. This was done by in-
efficient, as shown in Fig. 11. It is of interest to explore corporating a bias factos in the random walk model. The
further the dependence @fy on the frequencys. SinceD  value of e quantitatively determines this character. Thus,
depends strongly on the frequency, one might assume thghen e=0, we have a regular random walk, while when
existence of a scaling law and a possible relationship = we have a motion along a perfect straight line, i.e., fully
—a correlated motion. The values efin between are of interest,
Dy(w)~w™% (15 : -
as the system displays a crossover from ballistic to normal

However, as the data in Fig. 11 shows, this is only a Ver);iiffu_sion, and from early time to.Iong time. The crossover
rough approximation, since the curves, for the range of valScalings have been found numerically.

ues examined, are not strictly speaking straight, but exhibit S€cond, this model gives a picture of motion whose be-
some curvature. havior can be controlled via two parameters, the lkiand

Several related models have recently appeared in the [ith€ temperaturd, which can act as switches to control the
erature[19—24, which monitor motion in a field of a poten- Q|men5|onallty of thel motion. We- derived numencal equa-
tial which is sawtooth-like, as it is the shape of the inset intions that connect with the effective “percolation thresh-
Fig. 10, called “ratchet potential.” These potentials are typi—°|d Pc- o ) o )
cally noise induced19,22, and it has been shown that the Our next finding is the increase of thg dlffus_|on coeffi-
breaking of the spatial symmetry and time modulation resulfi€nt s soon as a bias with a frequeneys applied. The
in a Brownian particle acquiring a net macroscopic motion inresult is not trivial, because half the time the bias accelerates
a specific directiofi20,22, equivalent to our result of Figs. 9 the motion and half of the time impedes it. Still the net effect
and 10. These models are met in biological motor proteirS & considerable increase of the diffusion coefficient.
systems. While these processes are analogous to the behavior
met in the present work, there are no properties reported like
the ones we monitor, in order to make a direct comparison.
Our interest has been in the behavior of the square displace- This work was supported by the Greek-Bulgarian Bilat-
ment as a function of time, while in the rachet potential casesral Scientific Cooperation, and Copernicus Project No.
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