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Biased random walk in energetically disordered lattices
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We utilize our previously reported model of energetically disordered lattices to study diffusion properties,
where we now add the effect of a directional bias in the motion. We show how this leads to ballistic motion at
low temperatures, but crosses over to normal diffusion with increasing temperature. This effect is in addition
to the previously observed subdiffusional motion at early times, which is also observed here, and also crosses
over to normal diffusion at long times. The interplay between these factors of the two crossover points is
examined here in detail. The pertinent scaling laws are given for the crossover times. Finally, we deal with the
case of the frequency dependent bias, which alternates~switches! its direction with a given frequency, resulting
in a different type of scaling.@S1063-651X~98!11008-5#

PACS number~s!: 05.40.1j, 05.60.1w
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I. INTRODUCTION

Diffusion in the presence of disorder is an ever enlarg
field due to a wealth of new phenomena and processes
are being unravelled@1,2#. While the mechanism for the dif
fusion process itself is rather simple, in the presence of
order it is much more difficult to treat because one now
a combination of two stochastic processes, strongly dep
dent on each other. The details of their coupling is not cle
but one must take into account the fact that disorder
appear in a wide variety of different forms: it can be det
ministic or ~statistically! random, geometric or energeti
constant or varying with time, etc. so that the emerging s
tem is a combination of several different factors, each one
which must be properly treated in a separate way. The m
expectation is that the transport properties behave irre
larly, leading to highly anomalous diffusion of classical pa
ticles. The disorder itself can be geometric, due to an irre
lar lattice structure, such as, for example, the percola
model or a variety of fractal structures, in which case
details are determined by the ramifying characteris
present. Or it can be energetic, in which case the lattice s
~or bonds! are assigned different energy states. We have
cently introduced a model@3–6# with the latter type of dis-
order, which is placed on the bonds between the sites.
difference between site and bond disorder was pointed ou
the past@1#, and it affects the symmetry of the transitio
probabilities between adjacent sites. Our model assigns a
ferent energyE to every lattice bond, so that a particle ho
ping from one site to the next has to overcome a poten
barrier. The extent of disorder can be varied using a disp
sion parameter@7#. Transitions are performed by a hoppin
mechanism which is now very common in treating dis
dered systems with a large variety of applications, such a
semiconductor systems, in ionic conductivity, in superio
solids, in carrier recombination in glasses, and in dispers
in flow through porous media. Modified random walk mo
els that take the disorder into account are also used in s
approaches.
PRE 581063-651X/98/58~3!/2788~8!/$15.00
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A general behavior characterizing these systems is
disorder results in anomalous diffusion laws. It slows do
the diffusion process at early times. However, there exis
crossover timetc , after which diffusion becomes norma
with time. In a sense this crossover time is the characteri
‘‘equilibration’’ time, the time it takes for the diffusing par
ticles to reach an ‘‘equilibrium’’ state with the underlyin
disorder. This point has been also compared in the past
the percolation picture, in which the crossover time is
strong function of the temperatureT. Thustc gives the onset
of the exploitation of open channels for the particle to d
fuse, as a function of the order parameterT. The Arrhenius
plot of tc vs 1/T indeed produces identically the critica
threshold value, for two- and three-dimensional lattices@3#.
This trend of earlyt anomaly / longt linearity is not unique
in our system. There is a plethora of different systems wh
equivalent behavior is observed. To name a few: adsorp
and diffusion of interacting particles on a surface@8#, and
diffusion on extremely rugged energy landscapes with eq
minima @9,10#.

Nonsymmetric diffusion has in the past also been a pe
nent model for understanding several processes, such as
example, the excitonic motion at low temperatures@11#, hy-
drogen diffusion in group-VB metals at higher temperatu
@12#, the creation of vacancies in solids@13#, etc. In these
works there is an abundance of theoretical and simula
results modeling the experimental data. The nonsymmetr
characteristic was due to the retention of memory of the p
vious steps, resulting in enhanced diffusion. In the pres
work we also use asymmetric diffusion, which is now due
one designated preferred direction, constant in space
time, resulting in a drift-type motion, resembling the pr
sense of an external field. This also results in superlin
behavior. This type of motion is amenable to oriented s
tems, such as columnar liquid crystals, or kinetics in elec
phoresis. Technically, this is done by lowering the ene
barriers in a preferred direction, while raising the equivale
in the opposite direction for the duration of the hop. This
done by adding~subtracting! a bias factore to ~from! the
2788 © 1998 The American Physical Society
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PRE 58 2789BIASED RANDOM WALK IN ENERGETICALLY . . .
values of the energy barriers along~opposite to! the bias
direction. A ballistic type of motion is expected, and is i
deed observed. The overall system behavior depends on
interplay ofe, and the temperature.

A new picture emerges if the bias factor is not constan
time, but varies with a given frequencyv. It is a picture of
‘‘alternating current,’’ with the electrons switching directio
every 1/v steps. This also results in superlinear behavior
the mean-square displacement. Frequency dependent d
sion has been studied in the past@14–16#, but there the
mechanism involves the entire renewal of the disorder de
every 1/v steps, while in the present model the disorder
frozen and only the bias direction is frequency dependen

II. MODEL

We start with the earlier described@3–6# Monte Carlo
model, according to which a square lattice is generated
way that each two neighboring sites are connected wit
channel~bond! having an energy barrier with a height that
generated randomly from a given distribution. The height
the barriers depends on the average value^E&, and on a
given dispersion parameters, in the following way:

Ei j 5^E&2s~x20.5!, ~1!

wherex is a random number between 0 and 1 from a giv
distribution ~say, a uniform random number distribution!.
The parameters shows how widely dispersed the energi
are distributed, with larges values denoting a large degre
of disorder, while ass→0 the system becomes a perfe
lattice. All barriers remain frozen during the entire proce
Thus this model resembles the model of a rugged ene
landscape, where the ruggedness (s) can be varied at will
@7#. A particle is placed at a random position~site! on the
lattice, and then performs random walks. The decis
whether to jump or stay still and to what direction is bas
on the local environment and follows the Boltzmann sta
tics. The probabilitiesPi j to jump from sitei to site j are
calculated by:

Pi j 5
1

z
exp~2Ei j /kT!. ~2!

Here z is the coordination number,k the Boltzmann con-
stant, andT the system temperature. For convenience
takek51, and the temperature is measured in energy un
There is also a finite probability to remain on the same
~no jump!, which is given by

Pii 512(
j Þ i

Pi j . ~3!

The present barrier model has the feature that at all tim
Pi j 5Pji , since randomness is incorporated into the latt
bonds and not into the lattice sites. For the latter model
is not the case. We now introduce a bias parametere, only in
one of two dimensions, say in they dimension. This factor
makes jumps in one direction of they axis somewhat easie
~more probable!, and jumps in the opposite direction of th
same axis more difficult. This is done by momentarily lo
ering the height of the barrier along the direction of bias
the
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a fixed amount, (̂E&/2) e, and increasing the barriers in th
opposite direction by the same amount. Thus the energy
riers for the motion along the bias dimension become

Ei j
~y!5^E&y2sy~x20.5!7

e

2
^E&y . ~4!

The parametere can take any positive value, and thus t
term (̂ E&/2) e represents a multiple~or fraction! of 1

2 the
average energy value. This lowering/raising is not perm
nent, but is considered to occur only for the duration o
single jump, while the barrier energies revert to their regu
values afterwards. The minus sign pertains for the mot
along the direction of bias, while the plus sign for the opp
site direction. Since negative values ofEi j

(y) are not permit-
ted, Ei j

(y) is set equal to zero (Ei j
(y)50) in all cases when

negative values are obtained according to Eq.~4!. A sche-
matic of the modified density distribution is given in Fig.
where we observe the shift of the right boundary toward
left by the amount (̂E&/2) e. This results in a correspondin
part with negative energiesE, in the left boundary, which is
moved and added to ad function on zero.

The dimension that contains no bias is not affected at
and, thus, the forward and backward jumps in thex dimen-
sion ~the dimension perpendicular to the bias! have the same
probability as before. In this way the barrier~bond! energies
in the x dimension are defined by an expression similar
Eq. ~1!:

Ei j
~x!5^E&x2sx~x20.5!. ~5!

The result of such a biased walk is schematically sho
in Fig. 2, where we give two typical walks, starting at th
same point on the lattice: one with no bias and one with b
The case with no bias results in a regular random walk m
tion, similar in nature to a random walk on a regular surfa
The details of the energy barriers do not show at all, and
not affect the path traveled by the particle. For the case w
bias we clearly see the directional character of the moti
We observe a path that is almost unidirectional, along
direction of the bias. In this pictorial the lattice size is 40
31000; the random walk starts at the midpoint, i.e., at~200,
500!; the end point is around~200, 570!. This is because the
bias makes the particle to preferentially move toward
right in the lattice.

FIG. 1. The effective new distribution of energies after the
clusion of the bias factore. This factor has as a result the lowerin
of the Emax value by the ammount of (^E&/2) e, as shown.
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The mean values of the energy barriers along thex andy
dimensions,̂ E&x and ^E&y , and the corresponding dispe
sion parameterssx and sy , can be varied at will. This al-
lows one to model the motion in more or less oriented s
tems, or systems with anisotropic characteristics.
instance, one-dimensional motion is obtained for^E&x
@^E&y and sx50. Therefore, the algorithm permits one
have an asymmetric motion in two dimensions, not only d
to the bias but also when̂E&xÞ^E&y , or sxÞsy . The prob-
lem can be easily extended to three dimensions, using
same ideas and model discussed above.

In a further development, the sign of the direction of t
bias can alternate in time with a given frequencyv. In this
case the sign of the strength ofe is changing after 1/v steps,
but always along the same coordinate. In this way the ene
barriers for a motion along the bias dimension become:

Ei j
~y!5^E&y2sy~x20.5!7

e~v!

2
^E&y . ~6!

III. SIMULATION PARAMETERS

Here we give the parameter values used in the Mo
Carlo calculations. Typical sizes for the square lattice u
here have lengths of 10003400 sites. The reason we use
rectangle, rather than a square, is because the displace
along the coordinate with the bias is always larger than
one with no bias. Particles are placed in the center of
lattice before the walk is started. We always use cyc
boundary conditions. In all computations we use a unifo
random number distribution, and we set^E&x5^E&y50.5
and sx5sy51. This means that we have the maximu
width of energies in the range between 0 and 1, in b
dimensions. The bias parametere is varied between 0,e
,5.0. The temperatureT is in the range 0.05,T,1000.
The frequencyv changing the bias direction is in the rang
1024,v,1. Typical times sampled are up to 13106 steps
~exceptionally, at low temperatures we reach 103106 steps!.

FIG. 2. Pictorial of the path of a particle in the case of norm
diffusion with no bias~thin line!, and the case of diffusion with a
bias ofe50.9 ~thick line!. The temperature here isT50.075. The
direction of the bias in this case is along increasingx values. Both
walks start at the same origin, which is here~500,200!.
-
r

e

he

gy

te
d

ent
e
e

c

h

IV. RESULTS AND DISCUSSION

A. Unidirectional biased random walk

In Fig. 3, we plot the mean-square displacement^R2&, as
a function of time for a fixed value of the bias parametee
51.8, and several different temperatures, in the rangeT
50.05–1000. Because of different trends present, we sh
this figure in two parts:~a! low T and ~b! high T. We ob-
serve in part~a!, whereT is in the rangeT50.05– 0.5, that
in the long time limit all slopes reach a limiting value of 2
which is the expected result, since this model represen
form of ballistic motion whereby in the presence of extern
field ~bias! the particle drifts with a constant velocity alon
the field, so that̂ R2&;t2. The time it takes to reach thi
limiting value is a strong function of temperature. The low
the temperature, the longer this takes. Ignoring the first
steps, at early times we observe that the system is subd
sive, which is more pronounced the lower the temperatu
The reason for this behavior is the same as observed for
simple case of no bias reported earlier by us@3–5#. The
particle is trapped in some region of space which form
low-lying valley, and it must overcome some activation e
ergy barriers, given by the barrier heights of the model. T
can happen only via a thermal mechanism, so at very
temperatures detrapping from such a low-lying valley
highly unlikely, and the particles spend a considera

l

FIG. 3. The mean-square displacement^R2& as a function of
time ~number of steps!, for several different temperaturesT
50.05, 0.055, 0.065, 0.075, 0.1, 0.15, and 0.5~a!, andT50.5, 5,
10, 25, 100, and 1000~b!, for a frozen 2D lattice of size 400
31000, in log-log form. The bias parametere51.8 and the disper-
sion s51.0. We used 1000 realizations.
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PRE 58 2791BIASED RANDOM WALK IN ENERGETICALLY . . .
amount of time before making a successful jump over a h
barrier. Eventually, at longt, a limiting slope of 2 is always
attained, and the system is again in an ‘‘equilibrium’’ sta
This happens for any value ofeÞ0. Naturally, the smaller
the e value, the longer it takes for this to happen. We th
choose for Fig. 3 a relatively large value (e51.8) to speed
up this effect.

In Fig. 3~b!, we show the rangeT50.5–1000. Here we
observe an opposite effect to that shown in Fig. 3~a!, i.e.,
^R2& decreases with increasing temperature. More imp
tantly, the limiting slope of 2 progressively changes to
limiting value of 1, which is fully attained at the highe
temperatureT51000. This happens because, as the temp
ture is progressively increased, there is enough thermal
ergy to overcome barriers of any height, so that the effec
bias ~which results in simultaneous increasing and decre
ing of two barriers along one direction! is not that important
anymore. AtT5` the slope of thê R2& line would be ex-
actly equal to 1, since the effect of the bias is complet
lost. Had we combined parts~a! and ~b! in Fig. 3, several
curves would necessarily cross. The effect is shown m
clearly in Fig. 4, where we plot̂R2& vs T for several fixed
times. We observe in all cases that there is a maxim
aroundT50.5. This is the crossover point where the com
nation of the two opposite trends produces the largest^R2&
value. In Fig. 4 we plot̂ R2& vs T for several fixed timest,
t510, 102, 104, and 106 steps. We see that the maximu
~optimum! value is always aroundT50.5, while this maxi-
mum is more pronounced at longer times.

FIG. 4. The mean-square displacement^R2& as a function of
temperatureT, for the same data of Fig. 3, fore51.8.
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The effect of the biase is shown by the data of Table I
where we show the fraction̂Rx

2&/^Ry
2&, the bias being along

the y axis. All trends are as expected, i.e., the fraction d
creases with increasinge for low and intermediateT, while
it is almost constant for very highT.

In Fig. 5, we plot^R2& as a function of time, for a con
stant temperature (T50.60), which is in the intermediateT
range, for several different values of the bias parametee.
We observe the expected peel-off effect, i.e., the smaller
e value the longer it takes for the system to acquire
ballistic character. Eventually all slopes reach the limiti
value of 2, as expected, since at this temperature the effe
the bias is important.

For all curves of Figs. 3 and 5, the time it takes to rea
this limiting slope,tc , strongly depends on the system tem
peratureT and bias factore, respectively. For the data o
Fig. 3~a!, for high temperatures (T50.5) this happens rela
tively early, but as the temperature is decreased (T50.05),
tc gets progressively longer. This behavior is analogous
our earlier result@3# for the case of no bias (e50), in which
case the curves and trends are similar, but the limiting sl
was the classically expected slope of 1.0, resulting in a ty
cal Arrhenius behavior. However, in that case theR2 data
were monotonic with temperature, while here this is not
case. If we still prepare such a plot, we see in Fig. 6 t

FIG. 5. The mean-square displacement^R2& as a function of
time ~number of steps!, for several different values of the biase,
e50.1, 0.2, 0.5 and 1.0, for a frozen 2D lattice of size 4
31000, in log-log form. The temperature isT50.6 and the disper-
sion s51.0 ~1000 realizations!.
me

TABLE I. The ratio of the mean-square displacement perpendicular to the bias,^Rx

2&, over the mean-
square displacement along the bias,^Ry

2&, for various values of bias and temperature, at a fixed ti
(t5106 MC steps!. We used 500 realizations.

e

^Rx
2&

^Ry
2&

~T50.075!
^Rx

2&

^Ry
2&

~T50.15!
^Rx

2&

^Ry
2&

~T50.5!
^Rx

2&

^Ry
2&

~T55!
^Rx

2&

^Ry
2&

~T51000!

0.1 0.01928 0.00223 0.00214 0.0821 0.9726
0.3 0.00526 0.0003 0.000265 0.0097 0.9744
0.5 0.00319 0.00011 0.0000954 0.0037 0.9658
0.7 0.00177 0.00006 0.00005127 0.0020 0.9579
0.9 0.000897 0.00004394 0.00003356 0.0012 0.9478
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below a certain temperature (T,0.50) we obtain straigh
lines for all cases, i.e., we have Arrhenius behavior at
entire range. AboveT.0.50 we do not obtain Arrheniu
behavior due to the thermal effect discussed above. Thtc
values that were used in this figure were derived as the c
point of the two straight line segments~early time and late
time! of each curve of Fig. 3. The best fits from linear lea
squares were used in each case. The first and last p
needed to calculate the fit were chosen arbitrarily, by o
cally estimating the departure from linear behavior. In Fig
we have also included several additionale values. In Table II
we give the slopes of the straight lines for all these cases.
e50 we obtain a slope of approximately 0.5, which w
explained in the past to conform with the percolation pictu
sincepc50.50 is the critical percolation threshold for bon
percolation in two dimensions. Then, for differente values,
we obtain slopes that are progressively smaller than 0.5.
difference from 0.5 is proportional toe, i.e., the larger the
bias the more different is the crossover value from the 0
value.

We make the assumption that the temperature depend
of tc , for the straight line section of these curves, follows
experimental law

tc5expS Eeff

kT D . ~7!

TABLE II. The slopes of the straight lines of the Arrhenius plo
of the crossover timestc , for several biases investigated in Fig.

e Slope oftc

0 0.508
0.1 0.49
0.2 0.476
0.5 0.48
1.0 0.471
1.8 0.449
2.5 0.38
5.0 0

FIG. 6. The crossover timetc ~the time after whicĥ R2& be-
comes linear!, as a function of 1/T for the same data as in Fig.
(e51.8), and several moree values.
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In the case of no bias, this leads to the picture@3# of the
availability of open channels through which the particle c
propagate. Even though here we do not have a binary la
of open and closed bonds, still it was shown@3# that this
problem corresponds to an effective percolation problem,
which one should define and/or find the critical thresho
value by monitoring diffusion in a wide temperature rang
This produced a critical value ofpc50.5, from the Arrhenius
plot data, similar to Fig. 6. In our new problem here t
inclusion of the biase effectively decreasesEeff . The low-
ering ofEeff with increasing bias can be explained by taki
into account at least two additional effects: First, with t
increase of bias the dimensionality of the motion is chang
from two dimensional~for e50) to quasi-one-dimensiona
~for e5`); a good illustration of this effect was shown i
Fig. 2. Therefore, the effectivepc now depends one. Sec-
ond, the position ofEeff is determined@17,18# by the equa-
tion

E
0

Eeff~e!

P~E!dE5pc~e!, ~8!

where P(E) is the spectrum~the probability distribution
function of the barrier heights!, with the limiting condition

E
0

Emax~e!

P~E!dE51. ~9!

In the case of no bias (e50), we have a uniform distri-
bution of energy barriersP(E)5P, and the upper limit of
the integral in Eq.~9! is

Emax52^E&, ~10!

so that

P5
1

Emax
. ~11!

In the case of finite bias (e.0), it is useful to split the
integral in the following way:

E
0

Eeff~e!

P~E!dE5E
0

DE

P~E!dE1E
DE

Eeff~e!

P~E!dE.

~12!

As we reduce every barrier along the bias axis by
amount (̂ E&/2) e, the probability distribution function re-
mains uniform. Only in theP(E) versusE plot must the
rectangle be shifted to the left for a distance (^E&/2) e, as
shown in Fig. 1. This means thatP50 above the quantity
@Emax2 (^E&/2) e#, while it remains P5 1/(2^E&) ~un-
changed! below this limit. Then we set all negative energi
exactly at zero. This means thatP(E) is changed, but only in
the vicinity of E50, and it is changed in such a way that th
first integral is becomingP(^E&/2) e, while in the interval
betweendE and @2^E&2 (^E&/2) e# the probability is again
P.

By taking into acount the explicit form ofP(E), one has

Eeff52^E&pc~e!2
^E&
2

e, ~13!
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where the critical threshold is a function of the bias factore.
From Eq.~7!, it follows that the slopes of ln(tc) versus the
1/T plot, given in Fig. 6~and listed in Table II!, are equal to
Eeff(e) ~in k units!. Thus, we can use these data to determ
from Eq.~13! the dependence of the percolation thresholdpc
on e. At this point there is no basis for any predictions f
this dependence. Our results are shown in Fig. 7. It is s
that pc grows linearly from 0.5~for e50, two-dimensional
motion! to 1 ~for e52.2, quasi-one-dimensional motion!.
The best fit for the straight line gives a relationship

pc50.510.225e. ~14!

We conclude that the inclusion of the bias in the moti
has as a result the linear increase of the value of the thr
old, pc , making the motion one-dimensional-like. We al
observe that the valuee52.2 produces apc value of pc
51, which is the upper limit. This effectively says that f
this value the motion is one dimensional. This is not a g
eralized result, since it comes from simulations using
particular energy distributions, dispersions, etc.

In Fig. 8 we plot in log-log coordinates the critical tem
perarureTc above which the mechanism of motion switch
from ballistic motion to random walk against the biase. Tc

FIG. 7. The percolation thresholdpc(e) vs e. The straight line
is the best linear fit with slope 0.21.

FIG. 8. Plot of the critical temperatureTc vs e from the data of
Fig. 6.
e

en
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e

is given by the temperature at which a minimum appears
the tc against 1/T curves in Fig. 6. It follows thatTc scales
with e asTc;e0.21.

B. Frequency dependent biased random walk

We now turn to the case of a frequency dependent b
when e5e(v). Figure 9 gives the behavior of the mea
square displacement^R2& as a function of time for a fre-
quencyv50.1. This means that every 1/v 510 time steps
the bias direction changes sign, but always on the same
mension, say they dimension mentioned earlier. In the sam
figure are also given the mean-square displacements a
the bias axis,̂Ry

2&, and perpendicular to the bias axis,^Rx
2&.

If the biase is constant with respect to time, then the^R2&
curve is parabolic in linear coordinates. When the bias
alternating at a given frequency, we observe an almost lin
^R2& vs time dependence. On the other hand, because o
biase(v), the increase of the diffusion coefficient is consi
erable. The results forT50.05 andv50.1 are given in Fig.
9. We have obtained similar results forT50.1 and other
temperatures.

The manner in which the mean-square displacement a
the bias axis,̂ Ry

2&, depends on frequencyv is illustrated in
Fig. 10, forT50.05. Because of the alternation of the sign
e(v), the ^Ry

2& against time dependence is sawtooth-lik
This is clearly seen in the inset in the figure, forv
50.0001~i.e., the sign is reversed each 10 000 steps!. For all
other frequencies only lines connecting the minima of
corresponding sawtooth-like curves are presented.
slopes of the curves are the diffusion coefficientsDy(v) in
the direction along the bias axis.

When bias is applied, the particle moves predominan
along the direction of the bias~like running downhill!, while
being confined within a low barrier valley, surrounded
ridges of high barriers. Thus it comes comparatively quic
to the border of the valley. Due to the bias, the border
barriers~in the bias direction! will be lower, but the hopping
particle will still need some characteristic timetc until the
ridge is overcome and a new valley entered. Now, if the b
direction is reversed within a periodv21 ^tc &, the lower
ridge of barriers will again grow higher and the particle w
fail to overcome them within the characteristic timetc .
Clearly, the higherv is, the less mobile the hopping partic
will be, i.e., there is a small probability for successful mov

FIG. 9. The mean-square displacement as a function of time
a fixed frequencyv50.1. Both thex andy components of̂R2& are
plotted.
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ment along the rugged landscape of the lattice. Gener
this should lead to an overall reduction of the diffusion c
efficient, as shown in Fig. 11. It is of interest to explo
further the dependence ofDy on the frequencyv. SinceD
depends strongly on the frequency, one might assume
existence of a scaling law and a possible relationship

Dy~v!;v2a. ~15!

However, as the data in Fig. 11 shows, this is only a v
rough approximation, since the curves, for the range of v
ues examined, are not strictly speaking straight, but exh
some curvature.

Several related models have recently appeared in the
erature@19–22#, which monitor motion in a field of a poten
tial which is sawtooth-like, as it is the shape of the inset
Fig. 10, called ‘‘ratchet potential.’’ These potentials are ty
cally noise induced@19,22#, and it has been shown that th
breaking of the spatial symmetry and time modulation res
in a Brownian particle acquiring a net macroscopic motion
a specific direction@20,22#, equivalent to our result of Figs.
and 10. These models are met in biological motor prot
systems. While these processes are analogous to the beh
met in the present work, there are no properties reported
the ones we monitor, in order to make a direct comparis
Our interest has been in the behavior of the square displ
ment as a function of time, while in the rachet potential ca
the interest is in how noise induces directional motion.

FIG. 10. The mean-square displacement^Ry
2& as a function of

time for several different frequenciesv, as designated. The inse
contains the detail of the plot origin, where we observe the ‘‘sa
tooth’’ behavior discussed in the text. The temperature here
T50.05.
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V. CONCLUDING REMARKS

We presented a diffusion model for energetically dis
dered two-dimensional systems in which motion can be c
related according to an external field, and, therefore, parti
acquire a one-dimensional character. This was done by
corporating a bias factore in the random walk model. The
value of e quantitatively determines this character. Thu
when e50, we have a regular random walk, while whene
5` we have a motion along a perfect straight line, i.e., fu
correlated motion. The values ofe in between are of interest
as the system displays a crossover from ballistic to nor
diffusion, and from early time to long time. The crossov
scalings have been found numerically.

Second, this model gives a picture of motion whose
havior can be controlled via two parameters, the biase and
the temperatureT, which can act as switches to control th
dimensionality of the motion. We derived numerical equ
tions that connecte with the effective ‘‘percolation thresh
old’’ pc .

Our next finding is the increase of the diffusion coef
cient as soon as a bias with a frequencyv is applied. The
result is not trivial, because half the time the bias accelera
the motion and half of the time impedes it. Still the net effe
is a considerable increase of the diffusion coefficient.
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FIG. 11. The diffusion coefficientD(v) as a function of the
frequencyv of the bias, for several different temperatures.
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